Участники коллаборации XENON1T стали свидетелями завершения одного из самых медленных процессов во Вселенной – двухнейтринного обратного бета-распада атома ксенона-124.

Период полураспада этого изотопа в триллион раз больше времени жизни мироздания, пишут ученые в журнале Nature, передает РИА Новости.

«Мы воочию увидели этот распад. Это самый долгий, медленный процесс, который когда-либо удалось изучить человечеству, и наш детектор оказался достаточно чувствительным, чтобы мы напрямую могли проследить за ним. Удивительно, но теперь мы можем уверенно сказать, что XENON1T изучил самую редкую вещь во Вселенной», — заявил Итан Браун (Eathan Brown) из Политехнического института Ренессалера в Трое (США).

Установка XENON1T была построена в итальянской лаборатории Гран-Сассо в 2014 году для поисков следов существования «тяжелой» темной материи, так называемых частиц-«вимпов». Она представляет собой огромный чан, заполненный тремя тоннами сверхчистого ксенона, что примерно в 10 раз больше массы всех его конкурентов.

Ядра атомов благородного газа, как предполагали раньше ученые, должны были взаимодействовать с «вимпами» особым образом, что можно было обнаружить, наблюдая за вспышками света внутри сжиженного ксенона.

Ученые в результате экспериментов на японском детекторе KamLAND не обнаружили следов крайне редких вариантов распада ядер ксенона-136, что говорит о более низкой массе нейтрино, чем предполагалось.

За последние два десятилетия ученые создали около дюжины подобных детекторов со все большим объемом и массой. Ни один из них так и не смог зафиксировать следы взаимодействий ксенона с вимпами. Это заставляет сегодня многих физиков сомневаться в том, что подобная форма темной материи существует в природе.

В случае с XENON1T, эти усилия не были полностью безрезультатными. Браун и его коллеги не нашли «тяжелой» темной материи, но открыли следы одного из самых редчайших процессов во Вселенной, критически важного для поисков «новой физики».

Помимо классических бета- и альфа-распадов, существуют и другие, более экзотические варианты «самоуничтожения» нестабильных атомов, в ходе которых они вырабатывают пары электронов и нейтрино, или же поглощают их.

Некоторые из них были предсказаны теорией, но на практике пока не обнаружены из-за чрезвычайно больших периодов полураспада веществ, способных вести себя таким образом, или крайне низких шансов на то, что распад пойдет именно по этому сценарию.

В их число входил так называемый ECEC-распад, в ходе которого атом одновременно захватывает два электрона, они сливаются с протонами, порождая два нейтрона. Этот процесс может сопровождаться как выделением двух нейтрино, так и их взаимной аннигиляцией, причем шансы и на то, и на другое исчезающе малы.

Группа ученых, работающих в проекте EXO, на конференции в Мюнхене обнародовала результаты измерений периода полураспада одного из изотопов ксенона — ксенона-136 — по типу двунейтринного двойного бета-распада. Как оказалось, этот процесс занимает 2,11*10^21 лет.

За все время существования науки ученые нашли только два намека на существование первого подтипа ECEC-распадов, наблюдая за атомами бария-130 и криптона-78. Все замеры такого рода были непрямыми, из-за чего они вызывают сомнения у многих экспериментаторов и теоретиков.

Популярные статьи сейчас

Украинцам добавят 2300 гривен к пенсии: кто может рассчитывать на доплату

"Нова пошта" обратилась к клиентам из-за запрещенных посылок за границу: важные правила

В Украине введут новый "налог": кого коснутся изменения

Сырский прокомментировал скандал вокруг перевода авиационных специалистов в пехоту

Показать еще

Браун и его коллеги по коллаборации XENON1T доказали, что подобный процесс действительно происходит с атомами ксенона-124, бесчисленное множество которых присутствовало внутри чана их детектора.

Это устройство, как отмечает ученый, было устроено таким образом, что физики могли «промотать» время назад и проследить за источником и рождением любой вспышки света внутри емкости со сжиженным газом.

Анализируя подобные события, ученые натолкнулись на необычную порцию вспышек рентгеновского излучения и пучки электронов, которые не были похожи на следы распадов ксенона-124 по «обычным» каналам или на результаты проникновения космических лучей в чан XENON1T.

Проанализировав их свойства, ученые пришли к выводу, что вспышки света родились в тот момент времени, когда один из атомов ксенона-124 поглотил два электрона, превратился в теллур-124 и выбросил пару нейтрино. Эти перестройки привели к тому, что другие электроны начали массово мигрировать на «вакантные» места, что и породило необычные всплески рентгена.

Это открытие позволило физикам дать первую практическую оценку периода полураспада ксенона-124. Он оказался заметно длиннее, чем предполагали теоретики – 18 секстиллионов лет, что в 112 миллионов раз больше, чем считалось ранее, и в триллион раз выше, чем время существования Вселенной.

Последующие обнаружения ECEC-распадов, как надеются физики, помогут им измерить некоторые важнейшие свойства нейтрино, критически необходимые для проверки Стандартной модели физики и определения того, какой массой обладают эти неуловимые частицы. Вдобавок, ученые предполагают, что их находка повышает шансы на открытие еще более редких безнейтринных ECEC-распадов, напрямую связанных с тем, есть ли «новая физика» или нет.

Подписывайтесь на канал «Хвилі» в Telegram, на канал «Хвилі» в Youtube, страницу «Хвилі» в Facebook